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Abstract
New kinetic models of dissipation are proposed for the dynamics of an
ensemble of interacting oriented particles, for example, moving magnetized
nano-particles. This is achieved by introducing double-bracket dissipation
into kinetic equations by using an oriented Poisson bracket and employing
the moment method to derive continuum equations for the evolution of
magnetization and mass density. These continuum equations generalize the
Debye–Hückel equations for attracting round particles, and Landau–Lifshitz–
Gilbert equations for spin waves in magnetized media. The dynamics of self-
assembly is investigated as the emergent concentration into singular clumps of
aligned particles (orientons) starting from random initial conditions. Finally,
the theory is extended to describe the dissipative motion of self-interacting
curved filaments.

PACS numbers: 05.20.Dd, 81.16.Dn, 87.16.dr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many physical systems such as plasmas, particle-laden fluids and self-assembling molecules
may be understood in terms of collective dynamics of a large number of particles moving
in an ambient medium. Dissipation plays the crucial role for these systems of making
them tend towards an eventual equilibrium state in the absence of external forces. The
dissipation in heterogeneous systems is fundamentally different from internal dissipation in
homogeneous fluids, which is usually described by diffusion of mass and momentum by
microscopic scattering processes. The goal of this paper is to demonstrate a unifying principle
for deriving dissipation in systems consisting of particles migrating through an ambient fluid
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or matrix. The only role the matrix plays is to resist the motion of individual particles at the
microscopic level. That is, the matrix itself is assumed to have no dynamics of its own. This
resistance is applied both in configuration space and in momentum space when considering
kinetic processes.

Thus, we have in mind the physical situation of microscopic particles that are magnetized
(or otherwise oriented) moving under the influence of external forces and mutual attraction in
a passive ambient continuum. Such systems have attracted much attention recently because of
their potential technological significance. For example, magnetic nano-particles in this setting
have yielded crystalline structures whose concentrated densities far exceed that achievable
using lithographic procedures [1, 41, 46].

Much of the modern modeling of dissipation in systems of moving nano-particles is based
on the work of George Gabriel Stokes, who formulated his famous drag law for the resistance
of spherical particles moving in a viscous fluid at low Reynolds numbers. Reynolds number is
defined as the ratio R = UL/ν where U is the typical velocity, L is the typical size and ν is the
kinematic viscosity. Reynolds number is physically the ratio between a typical inertial term
and viscous force, and R � 1 means the total dominance of viscous forces. It is commonly
assumed that all processes in fluids at micro- and nano-scales are dominated by viscous forces
and the Stokes approximation applies. The Stokes result states that a round particle moving
through an ambient fluid will experience a resistance force that is proportional to the velocity
of the particle [2]. Conversely, in the absence of inertia, the velocity of a particle will be
proportional to the force applied to it since resistance force and applied force must balance.
This law—that ‘force is proportional to velocity’—is sometimes called Darcy’s law5.

In generalizing this concept to apply to an assembly of a large number of particles, we
define the relative density of particles as the number of particles per unit volume, ρ. Given the
energy of particles in given configuration E[ρ], the local velocity of particles under the force
F = −∇δE/δρ is u = −µF. The coefficient of proportionality is called the mobility µ.

In most cases, the mobility is allowed to depend on the density ρ. In particular, here we
allow for µ to be an average value of the pointwise dynamical variable ρ. This average value
is given by a convolution µ = K ∗ ρ with some positive-definite, symmetric kernel K. The
equation of motion for the pointwise density ρ is then given by the following conservation law
whose setting in statistical physics can be traced back to Debye and Hückel [8]:

∂ρ

∂t
= −div ρu = div

(
ρµ∇ δE

δρ

)
. (1)

This equation neglects the diffusion of ρ that may occur if the particles also experience
Brownian motion. Note that the rate of change of the energy E[ρ] and any arbitrary functional
of density F [ρ] is given by

dE

dt
= −

∫
ρµ[ρ]

∣∣∣∣∇ δE

δρ

∣∣∣∣2 dx,
dF

dt
= −

∫
ρµ[ρ]∇ δE

δρ
· ∇ δF

δρ
dx, (2)

which can be seen by direct application of equation (1). See also [21, 22, 38] for relevant
discussions.

It is interesting that the work of Gilbert on dissipation in the Landau–Lifshitz equation for
spin waves may be recast into the Darcy law form. Indeed, Gilbert [15] assumed a dissipative

5 H P G Darcy is best known for his empirical law on fluid flow through porous media, published as an appendix to
his book Les Fontaines publiques de la ville de Dijon. Darcy had built a water supply system for Dijon in 1840, and
in 1856, shortly before his death, he wrote a book to guide other engineers in constructing similar projects. Darcy’s
book was recently translated into English by P Bobeck [2003] Henry Darcy and the Public Fountains of the City of
Dijon, Geotechnical Translations, Austin, Texas.
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resistive force F [M] for a set of spins M that is proportional to the rate of change of M in
time, which we shall denote as Ṁ,

Fi[M] = ηij Ṁj . (3)

Gilbert proposed that in the absence of any information about the matrix ηij it is prudent to
assume that it is isotropic, so that ηij = ηδij . This simplifying assumption ultimately leads to
the Landau–Lifshitz–Gilbert dissipation term [15, 33] which we write as

dM
dt

= γ M × H +
λ

M2
M × M × H, (4)

where H is the magnetic field, which can be expressed in terms of the external field Hext

and the energy of particle interactions E[M] as H = Hext + δE/δM. Here δE/δM is the
variational, or Fréchet derivative and γ, λ are constants. In this theory, the mobility function
η satisfies Gilbert’s relation ηγ 2M2 = λ [15].

Gilbert’s theory is not universal and alternative phenomenological theories of dissipation
of magnetization exist that are not in generalized Darcy form [5, 7]. The Hamiltonian part
of Gilbert’s equation is the first term on the right-hand side of (4). This term mimics the
dynamics of the rigid body in terms of angular momentum. The important feature of Gilbert’s
model is that it conserves the magnitude of the magnetization vector |M|, while it dissipates
the total energy γ

∫
M · H d3x.

If we only take into account the dissipative (right-hand side) terms in Gilbert’s
equation (4), then the rate of change in an arbitrary functional of the magnetization M is
given by

dF

dt
= −

∫ (
M × δE

δM

)
·
(

M × δF

δM

)
dx. (5)

Hence, the rate of change of the magnetization energy is given by

dE

dt
= −

∫ (
M × δE

δM

)2

dx. (6)

Thus, in essence, both the Stokes drag law and Gilbert dissipation are based on a single
mathematical assumption. Namely, a dissipative force acting on a physical quantity is
proportional to the rate of change of that physical quantity. The Stokes drag law is valid
for mobile particles that interact via collisions. Gilbert’s work is developed for particles with
an immobile center of mass that can orient themselves and change their magnetic properties.
As far as we are aware, the work since Gilbert and Landau–Lifshitz on magnetic dissipation
has remained largely phenomenological. A theory of magnetic dissipation for freely moving
particles that is applicable to the self-assembly of nano-particles still remains to be derived. The
challenge now is to place the phenomenological arguments that have been shown historically
to be practical for magnetic dissipation into a systematic theoretical framework.

This paper derives equations for the dynamics of magnetized particles moving through
a passive ambient fluid. Our derivation of these dynamical equations is not based on
phenomenological arguments. Equations (2) and (6) possess intriguing physical and
mathematical similarities, but a direct generalization to moving particles with orientation
does not seem feasible. Instead, we proceed by introducing dissipation into the kinetic
(Vlasov) equation describing the motion of probability density f (p, q, t) in the single-
particle momentum p and coordinate q space. Only that approach can be physically justified.
Our starting point is the formulation of the dissipative kinetic theory of gases consisting of
arbitrarily shaped microscopic rigid bodies by accurately taking into account the linear and
angular momentum of a microscopic particle. The continuum equations of motion for the
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density and magnetization are then obtained by integrating out the momentum coordinate and
truncating the expansion to the first order (a procedure known as moment truncation in plasma
physics). Our general framework is of considerable physical interest because it recovers
both the continuum conservation law (1) for particles without orientation, and the Gilbert
dissipation (4) for oriented particles with an immobile center of mass. Moreover, in example
systems, we observe the formation of domains of coherent orientation and we analytically
predict the evolution of each domain.

We note that an alternative form of dissipation in continuum media, caused by the
Brownian motion and expressed as diffusion terms in the Fokker–Planck equations is not
suitable for our purposes, as applied to density, orientation or Vlasov probability density in
phase space. The Fokker–Planck equation is a drift-diffusion extension of the Vlasov equation
for kinetic dynamics that is widely used as a powerful tool in understanding the physics
of certain dissipative phenomena, especially in plasma physics. In this regard we mention
important results by Chavanis et al (see [6] and references therein), where a particular form of
equation (1) with µ = const. has been obtained from a generalized Fokker–Plank treatment
in the simpler case of isotropic interactions. However, informed by recent results achieving
highly concentrated states in nano-scale self-assembly [1, 41, 46], we assume that Brownian
particle diffusion may be neglected for our purposes. For other experiments with stronger
diffusive effects, one would seek an alternative theory.

2. A dissipative kinetic equation for collisionless systems

Recently, it was demonstrated [26] that Darcy’s conservation law (1) can be obtained from
the introduction of dissipation in the kinetic Vlasov equations, describing the evolution of the
density f (p, q, t) in the phase space of the form

∂f

∂t
+

{
f,

δH

δf

}
︸ ︷︷ ︸
Inertial part

=
{
f,

{
µ[f ],

δE

δf

}}
︸ ︷︷ ︸

Dissipative part

, (7)

where H [f ] is the Vlasov Hamiltonian and δH/δf is its variational (Fréchet) derivative,
governing the single-particle motion. The mobility (in phase space) µ[f ] is a modeling choice
and the energy functional E[f ] is usually taken to be the potential part of the Hamiltonian
H, describing just the self-interactions between the particles in the momentum space. The
variational derivative δE/δf is called the chemical potential. If the inertial part is neglected,
then by integrating this equation with respect to the momentum (p) we obtain precisely
equation (1), with ρ(q, t) = ∫

f (p, q, t) dp and µ[ρ] = ∫
µ[f (p, q, t)]dp. A particular

form of equation (7) with µ[f ] = f was first suggested by Kandrup [29] in the context of
galactic dynamics, and then analyzed further by Bloch et al [3, 4].

Properties of equation (7). We list a series of relevant results for equation (7) that were proved
in [26].

Lemma 2.1. Equation (7) preserves the single-particle solutions

f =
∑

k

wk(t)δ(p − pk(t))δ(q − qk(t)),

(with ẇk = 0) that are not allowed in other approaches in kinetic dissipation.

Lemma 2.2. Equation (7) preserves entropy S = ∫
f log f dp dq and has infinitely many

Casimirs: for an arbitrary function φ(f ), the integral
∫

φ(f ) dp dq is constant, independently
of the choice of interaction energy.
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Remark 2.3. Considering the advective nature of equation (7), the results in the lemmas
above should not be surprising. Indeed, since the Vlasov density f is advected by the phase-
space fluid, any integral of φ(f ) is constant and so is the entropy. The invariance of the
single-particle solution is also a consequence of the advective form of equation (7).

Lemma 2.4. If the inertial part is discarded, then truncating the moment equations and
keeping only the terms dependent on ρ = ∫

f (p, q, t) dp (zeroth moment terms) yields
exactly Debye–Hückel equation (1).

Let us now demonstrate how the dissipation given by (7) is connected to the Darcy’s law.
We neglect the inertial part of (1) and consider the rate of change for the energy E[f ] and an
arbitrary functional F [f ] using Kandrup’s choice for the mobility µ[f ] = f :

dE

dt
= −

∫ {
f,

δE

δf

}2

dx,
dF

dt
= −

∫ {
f,

δE

δf

}{
f,

δF

δf

}
dx. (8)

This result can also be easily generalized to mobility functionals having the form µ[f ] =
f M[f ], with M[f ] � 0 being a scalar functional of f [26]. For general mobility functionals
µ[f ], the quadratic form given by energy dissipation functional (8) is not necessarily positive
definite.

Thus, just as equation (1), the dissipation in (7) enforces the rate of change of an arbitrary
functional of the solution to be linear in both δE/δf and δF/δf . In particular, energy
dissipation is given by a quadratic form of δE/δf . This formulation in terms of energy
dissipation is actually equivalent to saying ‘force is proportional to velocity’, but it has much
more physical and mathematical power, which we are going to exploit in this paper.

The mathematical equivalence of the dissipation laws (2), (6) and (8) is now clear.

Assumption 2.5. The energy dissipation of an arbitrary functional F [f ] is a quadratic form
in the variational derivative of F [f ] and the energy E[f ] (see (9) below).

There seems to be no direct path to consistently generalize the evolution equation for moving
magnets to include both density and orientation, somehow combining (1) and (4). The path
we follow is to extend the kinetic equation (7) to account for orientation interaction and then
compute the evolution equations using the moments approach.

3. History and mathematical background

3.1. Selective decay hypothesis

This work was inspired by the dissipative bracket structure introduced in Bloch et al [4],
which in turn was motivated in part by the double bracket introduced by Vallis, Carnevale
and Young [44] for incompressible fluid flows. The dominant idea for [44] was the
selective decay hypothesis, which arose in turbulence research [34] and is consistent with
the preservation of coadjoint orbits. According to the selective decay hypothesis, energy in
strongly nonequilibrium statistical systems tends to decay much faster than certain other
ideally conserved properties. In particular, energy decays much faster in such systems
than those ‘kinematic’ or ‘geometric’ properties that would have been preserved in the ideal
nondissipative limit independently of the choice of the Hamiltonian. Examples are Casimir
functions for the Lie–Poisson formulations of various ideal fluid models [20].

The selective decay hypothesis, in turn, was inspired by a famous example in two-
dimensional turbulence theory. Namely, that enstrophy decays much more slowly than kinetic
energy in 2D incompressible fluid turbulence. Kraichnan [31] showed that the decay of kinetic

5
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energy under the preservation of enstrophy causes dramatic effects in 2D turbulence. Namely,
it causes the well-known ‘inverse cascade’ of kinetic energy to larger scales, rather than
the ‘forward cascade’ of energy to smaller scales that is observed in 3D turbulence. In 2D
ideal incompressible fluid flow the enstrophy (the L2 norm of the vorticity) is preserved on
coadjoint orbits. That is, enstrophy is a Casimir of the Lie–Poisson bracket in the Hamiltonian
formulation of the 2D Euler fluid equations. Vallis et al [44] chose a form of dissipation that
was expressible as a double Lie–Poisson bracket. This choice of dissipation preserved the
enstrophy and thereby enforced the selective decay hypothesis for all 2D incompressible fluid
solutions, laminar as well as turbulent.

Once its dramatic effects were recognized in 2D turbulence, selective decay was posited
as a governing mechanism in other systems, particularly in statistical behavior of fluid systems
with high variability. For example, the slow decay of magnetic helicity was popularly invoked
as a possible means of obtaining magnetically confined plasmas [42]. Likewise, in geophysical
fluid flows, the slow decay of potential vorticity (PV) relative to kinetic energy strongly
influences the dynamics of weather and climate patterns much as in the inverse cascade
tendency in 2D turbulence. The use of selective decay ideas for PV thinking in meteorology
and atmospheric science has become standard practice since the fundamental work in [27, 45].

Thus, in geophysical situations, one would like a dissipative mechanism that separates
the different time scales of decay of the energy and the PV. At leading order, one would like
a dissipative mechanism for which the energy decays but the PV persists. This is exactly the
sort of dissipative mechanism that was introduced in Vallis et al [44] and is being developed
more generally here. Likewise, in plasma physics and stellar dynamics, one would like to have
a dissipative mechanism that preserves the fundamental conservation of particle number, yet
has energy decay. Again, the general mechanism introduced here satisfies these properties.
(See Kandrup [28, 29], as well as Bloch et al [4] and references therein.) We will discuss all
of these examples and many others in the body of this paper.

3.2. Mathematical framework for geometric dissipation

As explained in [38], dissipation of energy E may naturally summon an appropriate metric
tensor. In previous work, Holm and Putkaradze [23, 25] showed that for any two functionals
F [κ],G[κ] of a geometric quantity κ a distance between them may be defined via the
Riemannian metric,

gκ(F,E) =
〈(

µ[κ] � δF

δf

)
,

(
κ � δE

δf

)

〉

X∗×X

. (9)

Here 〈·, ·〉 denotes the L2 pairing of vector fields (X) with their dual one-form densities (X∗),
sharp (·)
 raises the vector index from covariant to contravariant and µ[κ] is the mobility
functional. The mobility µ[κ] is assumed to satisfy the requirements for (9) to be positive
definite and symmetric, as discussed in [25]. The diamond operation (�) in equation (9) is the
dual of the Lie algebra action, defined as follows. Let a vector field ξ act on a vector space V

by Lie derivation, so that the Lie algebra action of ξ on any element κ ∈ V is given by the Lie
derivative,

ξ · κ = £ξ κ.

The operation dual to the Lie derivative is denoted by � and defined in terms of the L2 pairings
between X and X∗ and between V and V ∗ as

〈ζ � κ, ξ 〉X∗×X := 〈ζ,−£ξ κ〉V ∗×V . (10)

6
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Given the metric (9) and a dissipated energy functional E[κ], the time evolution of arbitrary
functional F [κ] is given by [23, 25] as

dF

dt
= {{F,E}}[κ] := −gκ(F,E) = −

〈(
µ[κ] � δE

δκ

)
,

(
κ � δF

δκ

)

〉

X∗×X

, (11)

which specifies the dynamics of any functional F [κ], given the energy dependence E[κ]. The
bracket {{F,E}} is shown to satisfy the Leibnitz product-rule property for a suitable class of
mobility functionals µ[κ] in [23, 25]. Equation (11) and positivity of gκ(E,E) imply that the
energy E decays in time until it eventually reaches a critical point, δE/δκ = 0.

Remark 3.1. For densities (dual to functions in the L2 pairing), the Lie derivative is the
divergence and its dual operation is (minus) the gradient. Thus, for densities the symbol
diamond (�) is replaced by gradient (∇) in the metric defined in equation (11).

Entropy-based dissipative brackets. Historically, variational approaches for introducing
dissipation that decreases energy and increases entropy were used already at the end of
the 19th century by Lord Rayleigh. However, interest in the use of symmetric brackets for
introducing dissipation of this type into Hamiltonian systems seems to have arisen a century
later almost simultaneously in the works of Kaufman [30], Morrison [35] and Grmela [16].
This later approach introduces dissipation using a symmetric bracket operation that increases
an entropy, in concert with nonequilibrium thermodynamics approaches going back to Onsager
and Casimir. See [17, 18] and [37] for references to this approach and its further engineering
developments.

The dissipative bracket in equation (11) differs fundamentally from the symmetric brackets
proposed earlier for entropy-based dissipation in [16, 30, 35]. In particular, the dissipative
bracket in equation (11) preserves entropy, while the dissipative brackets in the earlier literature
are based on increasing entropy. Moreover, the dynamics of dissipative brackets based on
entropy decrease does not appear to be expressible as a geometric transport equation in Lie-
derivative form. Thus, on geometric and thermodynamic grounds, the two approaches are
essentially different. It remains an interesting open question as to whether these two different
approaches could be used in some complementary fashion.

4. Kinetic equation for anisotropic particles and Landau–Lifshitz equations

We now turn to the problem of a system composed of immobile particles of arbitrary shape.
The orientation m of particles now appears as an additional degree of freedom, but the particle
momentum p is going to be neglected in this section since centers of mass for the particles
are assumed to be immobile. In our approach we consider orientation as given by the angular
momentum of each particle. Thus, instead of considering unit vectors for orientation, we
consider angular momentum vectors and each particle is treated as a rigid body.

Let us consider the non-dissipative case first. The evolution equation for the distribution
function ϕ(x,m, t) in this approach is written in the conservation form in the U = (Ux, Um)

on the (x,m) space

∂ϕ

∂t
= −div(x,m) (ϕU) = −∇x · (ϕUx) − ∂

∂m
· (ϕUm) .

As mentioned earlier, we set Ux = 0 in this section, since the centers of mass for the particles
are assumed to be stationary. Since the angular momentum for a rigid body evolves according

7
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to the Hamiltonian motion ṁ = m × ∇mh = Um, we can write our kinetic equation as

∂ϕ

∂t
+

[
ϕ,

δH

δϕ

]
= 0,

where we have used the definition of the rigid-body bracket

[ϕ, h] := m · ∇mϕ × ∇mh, (12)

and the global Hamiltonian is written as

H [ϕ] =
∫ ∫

ϕ(x,m)h(x,m) d3x d3m.

Having obtained the conservative dynamics in the bracket form, we are motivated to insert the
dissipation as the double-bracket form of (7) as follows:

∂ϕ

∂t
+

[
ϕ,

δH

δϕ

]
︸ ︷︷ ︸

Inertia

=
[
ϕ,

[
µ[ϕ],

δE

δϕ

]]
︸ ︷︷ ︸

Dissipation

. (13)

In this context, it is reasonable to take the moments with respect to m and in particular we
want the equation for the magnetization density, defined by

M(x, t) :=
∫

mϕ d3m,

for the case that H = E. We now introduce the assumption that the single-particle energy h
is linear in m. It is easy to see that this assumption recovers, for example, the expression of
the potential energy of a magnetic moment in a magnetic field.

Again, let us consider only the dissipation terms in (13), i.e., the term on the right-hand
side and use Kandrup’s assumption for the mobility µ[ϕ] = ϕ. Then, we find an evolution
of an arbitrary functional F [ϕ] as well as dissipation of energy E[ϕ] in the quadratic form
analogous to (8):

dF

dt
= −

∫ [
ϕ,

δE

δϕ

] [
ϕ,

δF

δϕ

]
dx,

dE

dt
= −

∫ [
ϕ,

δE

δϕ

]2

dx. (14)

The extension to more general mobility functionals is also possible, but the quadratic form
describing the dissipation will not be symmetric, in general, for an arbitrary choice of the
mobility functional.

Now, by using the method of moments we compute the equation for the magnetization
density M as

∂M
∂t

= M × δH

δM
+ M × µ[M] × δE

δM
,

thereby recovering exactly the Landau–Lifshitz–Gilbert equation (LLG) for magnetization
dynamics (4) for the choice of magnetic mobility µ[M] = M, which arises from Kandrup’s
original choice of mobility, µ[f ] = f .

It is interesting to note that similar ideas for the extensions of Gilbert dissipation were
recently suggested phenomenologically in [43].

5. Dissipative kinetic equation for moving particles with orientation

The kinetic approach for immobile oriented particles can be generalized to moving oriented
particles. We use the energy-dissipation approach and generalize the formula (8) to more
general Poisson bracket that involves both density and orientation. Interestingly enough, this

8
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Poisson bracket was derived 25 years ago in Gibbons et al [11, 12] for Yang–Mills plasmas.
We believe that we are the first to apply this bracket to dissipation in the setting of oriented
particles. The modified Poisson bracket {·, ·}1 is defined as{

f,
δE

δf

}
1

=
{
f,

δE

δf

}
+

[
f,

δE

δf

]
, (15)

that is, it is a sum of a canonical Poisson bracket {·, ·} in single-particle position and canonical
momentum and the rigid-body bracket [·, ·] in (12). For g belonging to the dual of a general
Lie algebra g (not necessarily so(3)∗), we can compute elements δE/δg ∈ g and δF/δg ∈ g.
We thus define a generalized rigid-body bracket as

[E,F ] =
〈
g,

[
δE

δg
,
δF

δg

]
LA

〉
. (16)

Here, we have used [, ]LA—the Lie algebra bracket in g. For this choice of the new bracket
the quadratic form describing the dissipation (8) generalizes naturally to the anisotropic case
as follows:

dF

dt
= −

∫ {
µ[f ],

δE

δf

}
1

{
f,

δF

δf

}
1

dx. (17)

Taking the moments of the anisotropic kinetic Vlasov equation following from (17) leads
to a new kind of continuum dynamics naturally generalizing equation (1) to the case of
anisotropic interaction. To simplify the formulae, we neglect the inertia of the particles. As
mentioned in the introduction, this is a common assumption for friction-dominated systems.
This assumption means neglecting the term {f, δH/δf } in the left-hand side of (7). Thus we
are left with the following equation which will form the core of further analysis,

∂f

∂t
=
{
f,

{
µ[f ],

δE

δf

}
1

}
1

. (18)

The remainder of this section follows the reasoning in [25], where the reader may find many
more technical details and exposition of some related problems.

5.1. Landau–Lifshitz through the Smoluchowski approach

When dealing with kinetic theories, the kinetic moments are a well-established tool for deriving
simplified continuum descriptions. However, in the case of anisotropic interactions, the kinetic
moments An = ∫ pnf (q, p, g) dp depend not only on the position coordinate, but also on the
single-particle Lie algebra coordinate g. Thus, the moment equations differ from those found
in the isotropic case, since they must include the terms which take into account the anisotropic
behavior.

Moment dynamics has a Hamiltonian structure which is justified by the theorem that taking
moments is a Poisson map. In fact, their dynamics is governed by the Kupershmidt–Manin
bracket [13, 14]. This process can be transferred to the double-bracket formulation as follows.
As in the Kupershmidt–Manin approach, the moments are dual to the variables βn(q, g), which
are introduced by expanding the Hamiltonian function h(q, p, g) as h(q, p, g) = pnβn(q, g).
The Lie algebra action is given by

βn · f = {f, pnβn

}
1 .

The dual action is defined by a star (�) operator which is the symplectic equivalent of the
diamond (�) operation, as follows:

〈f �nk, βn〉 := 〈f, βnk〉 = 〈f � k, pnβn(q, g)〉 =
〈∫

pn{f, k}1 dp, βn

〉
,

9



J. Phys. A: Math. Theor. 41 (2008) 344010 D D Holm et al

Thus, the star operator is defined explicitly for k = pmαm as

f �nk = ad∗
αm

Am+n−1 +

〈
g,

[
∂Am+n

∂g
,
∂αm

∂g

]〉
,

where the ad∗ operator is the Kupershmidt–Manin Hamiltonian operator, see [13, 14]. We
introduce the dissipative bracket by

Ḟ = {{F,E}} = −
〈
µ[f ]�n

δE

∂f
, f �n

δF

∂f

〉
. (19)

We truncate this sum at the simplest level, by taking n = 0. For higher order approximations,
giving quite intricate formulae, see [25]. By using this evolution equation for an arbitrary
functional F, the rate of change for zeroth moment A0 is found to be

∂A0

∂t
=
〈
g,

[
∂A0

∂g
,
∂γ0

∂g

]〉
,

where one defines γ0 := µ[f ] �0 δE/δf , which is explicitly given by

γ0 =
〈
g,

[
∂µ0

∂g
,
∂β0

∂g

]〉
.

Upon introducing the notation {·, ·} for the Lie–Poisson bracket on the Lie algebra g

{k, h} :=
〈
g,

[
∂k

∂g
,
∂h

∂g

]〉
,

we may write the equation for ϕ = A0 in the double-bracket form,

∂ϕ

∂t
=
{
ϕ,

{
µ[ϕ],

δE

δϕ

}}
. (20)

This is the purely dissipative moment equation corresponding to the Vlasov equation for the
oriented particles (18). It is straightforward to see that the inclusion of the inertial part such
as in equation (7) yields a moment equation of exactly the same form as equation (13)

∂ϕ

∂t
+

{
ϕ,

δH

δϕ

}
=
{
ϕ,

{
µ[ϕ],

δE

δϕ

}}
. (21)

We have now shown how to derive equation (13) from the kinetic approach by taking the
zeroth moment. Next, one could continue by integrating over the microscopic magnetization
m and thereby obtain the Landau–Lifshitz–Gilbert equation (4).

In the particular case g = m ∈ so(3) of interest to us for oriented-particle dynamics, the
Lie–Poisson bracket reduces to the rigid-body bracket {ϕ, h} := m ·∇mϕ ×∇mh. The global
Hamiltonian is written as H [ϕ] = ∫ ∫ ϕ(q,m)h(q,m) dq d3m and an analogous expression
holds for the dissipation energy E[ϕ]. The generalization to higher spatial dimensions is
straightforward, since there are no derivatives in spatial coordinates in equation (21).

We next take moments with respect to m. The particular physical case of magnetization
density M(x, t) := ∫

mϕ d3m requires H = E. We assume that the single-particle energy
h is linear in m since this assumption recovers the expression of the potential energy of a
magnetic moment in a magnetic field. We consider only the dissipation terms in (13), i.e., we
drop the second term on the left-hand side of that equation. Then, we obtain the rate of change
of the energy E[ϕ], as well as of an arbitrary functional F [ϕ] in the quadratic form analogous
to (8):

dE

dt
= −

∫ [
µ[f ],

δE

δf

]2

dx,
dF

dt
= −

∫ [
µ[f ],

δE

δf

] [
f,

δF

δf

]
dx. (22)

10
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The method of moments gives the equation for the magnetization density M
∂M
∂t

= M × δH

δM
+ M × µ[M] × δE

δM
,

which recovers exactly the Landau–Lifshitz–Gilbert equation (LLG) for magnetization
dynamics (4) for µ[M] = M, arising from Kandrup’s original choice of mobility µ[f ] = f .

5.2. Dissipative moment dynamics: an alternative treatment

In this section, we extend the Kupershidt–Manin approach as in [11, 12] to generate the
dynamics of moments with respect to both momentum p and charge g. The main technical
complication is that the Lie algebras of physical interest (such as so(3)) are not one dimensional
and in general are not Abelian. Thus, in the general case one needs to use a multi-index notation
as in [32, 13]. We introduce multi-indices σ := (σ1, σ2, . . . , σN), with σi � 0, and define
gσ := g

σ1
1 . . . g

σN

N , where N = dim(g). Then, the moments are expressed as

Anσ (q) :=
∫

pngσf (q, p, g) dp dg.

This multi-dimensional treatment encumbers the calculations with technical complications.
For the purposes of this section, we are primarily interested in the equations for ρ and G, so
we restrict our considerations only to the moments of the form

An,ν =
∫

pngνf (q, p, g) dp dg ν = 0, 1, . . . , N.

Here we define g0 = 1 and ga = 〈g, ea〉 where ea is a basis of the Lie algebra and 〈gbeb, ea〉 =
ga ∈ R represents the result of the pairing 〈·, ·〉 between an element of the Lie algebra
basis and an element of the dual Lie algebra. We write the single-particle Hamiltonian as
h = δH/δf = pngνδH/δAn,ν =: pngνβ

ν
n(q), which means that we employ the following

assumption.

Assumption 5.1. The single-particle Hamiltonian h = δH/δf is linear in g and can be
expressed as

h(q, p, g) = pnψn(q) + pn〈g,ψn(q)〉,
where ψn(q) ∈ R is a real scalar function and ψn(q) ∈ R × g is a real Lie-algebra-valued
function.

Dual Lie algebra action. The action of βν
n on f is defined as

βν
n · f = {pngνβ

ν
n , f

}
1 (no sum).

The dual of this action is denoted by (�n,ν). It may be computed analogously to (10) and found
to be

f �n,νk =
∫ ∫

pngν

{
f, k
}

1 dp dg

=
∫

gνgσ ad∗
ασ

m
Am+n−1 dg +

∫
gν

〈
g,

[
∂Am+n

∂g
,
∂(gσασ

m)

∂g

]〉
dg

= ad∗
ασ

m

∫
gνgσAm+n−1 dg +

∫
gν

〈
g,

[
∂Am+n

∂g
,
∂(gaα

a
m)

∂g

]〉
dg.

Here, k = pmgσασ
m(q) and we have used the definition of the moment

An(q, g) =
∫

pnf (q, p, g) dp.

11
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Evolution equation. Having characterized the dual Lie algebra action, we may now write the
evolution equation for an arbitrary functional F in terms of the dissipative bracket as follows:

Ḟ = {{F,E}} = −
〈〈(

µ[f ]�n,ν

δE

∂f

)


, f �n,ν

δF

∂f

〉〉
, (23)

where the pairing 〈〈·, ·〉〉 is given by integration over the spatial coordinate q. Now we fix
m = 0, n = 1. The equation for the evolution of F = A0,λ := ∫

gλA0 dg dp is found from
(23) to be

∂A0,λ

∂t
= ∂

∂q

(
γ




1,ν

∫
gνgλA0 dg

)
+
∫

gλ

〈
g,

([
∂A1

∂g
,
∂
(
gaγ




1,a

)
∂g

]
+

[
∂A0

∂g
,
∂
(
gaγ




0,a

)
∂g

])〉
dg, (24)

where we have defined the analogues of Darcy’s velocities:

γ0,ν := µ[f ]�0,ν

δE

δf
=
∫

gν

〈
g,

[
∂µ̃k

∂g
,
∂
(
gaβ

a
k

)
∂g

]〉
dg =

∫
gν

〈
g,

[
∂µ̃0

∂g
,
∂
(
gaβ

a
0

)
∂g

]〉
dg,

and

γ1,ν := µ[f ]�1,ν

δE

δf
= ∂βσ

0

∂q

∫
gνgσ µ̃0 dg +

∫
gν

〈
g,

[
∂µ̃1

∂g
,
∂
(
gaβ

a
0

)
∂g

]〉
dg,

with µ̃k := ∫
pkf dp. Here we have assumed that the energy functional E depends only on

A0,λ (recall that βλ
n := δE/δAn,λ), so that we may fix k = 0 in the second line. At this

point, we further simplify the treatment by discarding all terms in γ1,a , that is we truncate
the summations in equation (24) to consider only terms in γ0,0, γ0,a and γ1,0. With this
simplification, equation (24) becomes

∂A0,λ

∂t
= ∂

∂q

(
γ1,0

∫
gλA0 dg

)
+
∫

gλ

〈
g,

([
∂A0

∂g
,
∂
(
gaγ




0,a

)
∂g

])〉
dg, (25)

and the expression for γ1,0 is

γ1,0 := µ[f ]�1,0
δE

δf
= ∂βσ

0

∂q

∫
gσ µ̃0 dg.

Let us now define the dynamic quantities

ρ =
∫

f dg dp, G =
∫

gf dg dp,

and corresponding mobilities

µρ =
∫

µ[f ] dg dp, µG =
∫

gµ[f ] dg dp.

In terms of these quantities, we may write the following.

Theorem 5.2. The moment equations for ρ and G are given by

∂ρ

∂t
= ∂

∂q

(
ρ

(
µρ

∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉))
(26)

and

∂G

∂t
= ∂

∂q

(
G

(
µρ

∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉))
+ ad∗(

ad∗
δE
δG

µG

)
G. (27)

12
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Remark 5.3. Similar equations (under the name of geometric order parameter equations)
were derived via a general geometric considerations in [23]. The equations presented here
reduce to those for the case of commutative Lie algebras.

Remark 5.4. Although in this section the underlying space where particles undergo their
motion is assumed to be one dimensional, the extension to higher spatial dimensions is trivial:
since the Lie derivative of a density is given by the divergence term in spatial coordinate q, we
need to substitute div and grad instead of one-dimensional derivatives with respect to q. See
(28), (29) immediately below for an explicitly computed particular case.

6. Self-organization dynamics of moving magnets

We are now ready to write out explicit equations for the motion of magnets in d = 1, 2 or
3 dimensions. In this case G = M(x) ∈ R

3—average magnetization, advw = v × w and
ad∗

vw = −v × w, and the Lie algebra pairing is represented by the dot product of vectors in
R

3. Therefore, the equations for (ρ, M) are obtained directly from (26), (27) and are written
as follows:

∂ρ

∂t
= div

(
ρ

(
µρ∇ δE

δρ
+ µM · ∇ δE

δM

))
, (28)

and

∂M
∂t

= div

(
M ⊗

(
µρ∇ δE

δρ
+ µM · ∇ δE

δM

))
+ M × µM × δE

δM
. (29)

This is the generalization of the Landau–Lifshitz–Gilbert and Debye–Hückel equations we
have sought. The main consequence of equations (29) is that they allow single-particle
solutions of the form

ρ(x, t) = wρ(t)δ(x − Q(t)),

M(x, t) = wM(t)δ(x − Q(t)).
(30)

where wρ,wM and Q undergo the following dynamics:

ẇρ = 0, ẇM =
(

wM × µM × δE

δM

)
x=Q

, Q̇ = −
(

µρ∇ δE

δρ
+ µM · ∇ δE

δM

)
x=Q

.

These solutions have an important physical meaning, since they represent particles that
aggregate and align. This phenomenon is of fundamental importance in the theory of
anisotropic self-assembly. There are special cases where these solutions emerge spontaneously
from any confined initial distribution. These behavior depends on the particular choice of
mobilities and energy functionals. A typical result of simulations is presented in figure 1.
Starting with a random distribution in one dimension, we see the formation of sharp peaks
in magnetization M (left figure) and density ρ (color code on the left and plot on the right),
corresponding to the δ-functions.

7. Moving dissipative oriented curves: new variables in geometric dynamics

The structure of singular solutions allows us an interesting geometric generalization, namely a
possibility for singular solutions to be concentrated on a one-dimensional manifold (a curve)
in the two- or three-dimensional space. This will give an interesting addition to the theory
of exact geometric rods [40], as our equations describe the dissipative motion of a curve.

13
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Figure 1. Left: a typical example of formation of orientons in a d = 1 dimensional simulation.
The color code on the cylinder denotes the local averaged density ρ = H ∗ ρ for a Helmholtz
kernel H = e−|x|: black is the maximum density while white is ρ = 0. Purple lines denote
the three-dimensional vector M = H ∗ M. The formation of sharp peaks in averaged quantities
corresponds to the formation of δ-functions in (28), (29) according to (30). Averaged quantities
were chosen to avoid the necessity to represent δ-functions. Right: the corresponding waterfall
plot for evolution of averaged density ρ = H ∗ ρ. Horizontal coordinate is space. Sharp peaks
correspond to the formation of δ-function singularities in the density variable ρ.

Formally, we extend equations (30) and assume that the solution is concentrated on a curve
in space r = Q(s, t), where s is the arclength. Then, we are interested in the solutions of the
form

ρ(x, t) =
∫

wρ(s, t)δ(x − Q(s, t))ds

M(x, t) =
∫

wM(s, t)δ(x − Q(s, t))ds.

(31)

Multiplying each equation (28), (29) by a test function and integrating produces the following
equations of motion:

∂

∂t
wρ(s, t) = 0, (32)

∂

∂t
wM(s, t) = wM × µM(Q(s, t)) × δE

δM
(Q(s, t)), (33)

∂

∂t
Q(s, t) = µρ(s, t)∇ δE

δρ
(Q(s, t)) + µM(s, t)∇ δE

δM
(Q(s, t)). (34)

In the simplest case of a binary energy functional,

E = 1

2

∫
ρ(x)ρ(x′)Gρ(x − x′) + M(x)M(x′)GM(x − x′) d3x d3x ′, (35)

where GM is assumed to be a scalar function, equation (34) assumes an especially simple and
elegant shape (see also [24]):

∂

∂t
Q(s, t) =

∫
µρ(s, t)ρ(s ′, t)∇Gρ(Q(s, t),Q(s ′, t))

+ µM(s, t) · M(s ′, t)∇GM(Q(s, t),Q(s ′, t)) ds ′. (36)

To illustrate the concepts developed above, we perform a simulation of the spatio-temporal
evolution for two oriented curves, having the simplest energy dependence given by (35). In the

14
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t=0 t=12

t=25 t=50

Figure 2. An example of two oriented curves (red and green) attracting each other and unwinding
at the same time. The blue vectors illustrate the vector M ∈ so(3) at each point on the curve. Time
scale is arbitrary.

future, we shall consider more sophisticated models of energy using the technique developed
in (49) below. In computer simulations presented in figure 2, we assumed centrally symmetric
Lennard–Jones potential for the density interaction and the Helmholtzian GM(x) = exp(−|x|)
for the orientation part of energy. Initially, the curves are far away from each other and the M
values on the curves are unrelated. Eventually, the curves collapse to two parallel lines and
the M vectors on both curves align.

8. Orientation-dependent interaction energies: geometric considerations

Energy (35) provides insight, but it is too simple to describe many interesting physical
phenomena, for example, dynamics of assembly of biologically relevant particles into curves
like DNA. The energy of these particles depends on the position x and orientation �(x) of a
frame at a point x, and the relative distances and orientations with respect to all other points
x′. We are thus compelled to deal with more interesting energies reflecting this physical fact,
and this will lead us to some interesting mathematical consequences. The technical question
here is how to compute δE/δM, if the energy is given in terms of �. Of particular interest
to us is the so-called anisotropic Lennard–Jones potential that has been developed in [39] and
has been subsequently applied to produce self-organization of anisotropic particles into the
shape of a double helix [10]. The idea of this method is the following.

Consider two ellipsoids with the geometric centers at x and x′ and orientation with
respect to the fixed frame �(x) and �(x′), respectively. The method computes the distance
d(x, x′,�(x),�(x′)) between ellipsoidal surfaces along the direction of x − x′. This is close
to the minimal distance between the ellipsoids, but it is easier to compute. In principle, to
make the depth of the potential well different for attracting and repulsive potential, one can
consider two distances d = d1 and d = d2, corresponding to the attractive and repulsive parts
of the ellipsoids. The distances d1 and d2 are defined as di = σ0 + |x − x′| + fi(�(x, λx′)),
where σ0 is a given constant and fi are some (rather complex) functions. One then takes the
potential to be the Lennard–Jones potential of the modified distances

U{d(x, x′,�(x),�(x′))} = 4ε0

[(
σ0

d1

)12

−
(

σ0

d2

)6
]
. (37)
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An important feature of this potential that has not been noted in previous works is its invariance
with respect to SO(3) rotations about each point on the curve. Thus, the energy functional
may be written as

E = 1

2

∫
ρ(x)ρ(x′)U(x, x′,�(x),�(x′)) dx dx′, (38)

where U is some scalar function of its arguments. This energy is still binary, i.e. it is a direct
sum of pairwise interaction of all particles, which is known to be a rather crude approximation
for real systems. However, we believe it is important to first understand this SO(3)-invariant
energy. Later, the equations of motion for more general energies may be obtained by direct
generalization. Invariance with respect to the rotation group requires that the energy of particle
interaction assumes the following form:

E = 1

2

∫
ρ(x)ρ(x′)U(|x − x′|, ξ(x, x′)) dx dx′, (39)

where we have defined

ξ(x, x′) = �(x)−1�(x′) ∈ SO(3). (40)

Remark 8.1. Note that we have assumed that the energy does not depend directly on a Lie
algebra element M̂ = �−1∇�. That means, in particular, that elastic energy caused by particle
motion is not included. The introduction of elastic energy complicates the equations and will
be considered in future work.

Now, we need to compute δE/δ�. We proceed as follows. Define �(x) = �−1(x)δ�(x) ∈
so(3). Then, note that

δξ = δ(�−1(x)�(x′))
= −�−1(x)δ�(x)�−1(x)�(x′) + �−1(x)δ�(x′)
= −�(x)ξ(x, x′) + �−1(x)�(x′)�−1(x′)δ�(x′)
= −�(x)ξ(x, x′) + ξ(x, x′)�(x′), (41)

since ξ = �−1(x)�(x′) ∈ SO(3). Thus,

δE =
∫

ρ(x)ρ(x′)tr

((
∂U

∂ξ
(x, x′)

)T

{−�(x)ξ(x, x′) + ξ(x, x′)�(x′)}
)

dx dx′

=
∫

ρ(x)ρ(x′)tr

(
−
(

∂U

∂ξ
(x, x′)ξ(x, x′)T

)T

�(x)

)
dx dx′

+
∫

ρ(x)ρ(x′)tr

((
ξ(x, x′)T

∂U

∂ξ
(x, x′)

)T

�(x′)

)
dx dx′. (42)

In the last term, x and x′ were exchanged to make the variation �(x′) a function of x. When
making this exchange, we must remember that

ξ(x, x′) = �(x)−1�(x′) = ξ−1(x′, x) = ξT (x′, x)

and similarly,

∂U

∂ξ
(x, x′) =

(
∂U

∂ξ
(x′, x)

)T

.
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Consequently, we find

δE =
∫

ρ(x)ρ(x′)tr

(
−
(

∂U

∂ξ
(x, x′)ξ(x, x′)T

)T

�(x)

)

+
∫

ρ(x)ρ(x′)tr

⎛⎝(ξ(x, x′)
(

∂U

∂ξ
(x, x′)

)T
)T

�(x)

⎞⎠ dx dx′.

Thus, collecting terms leads to

δE =
∫

ρ(x)ρ(x′)

〈
−∂U

∂ξ
(x, x′)ξ(x, x′)T + ξ(x, x′)

(
∂U

∂ξ
(x, x′)

)T

,�(x)

〉
dx dx′.

If we now turn from the variations in � to variations in �, we find � in front of the integral,
and the final formula for the variation of energy is thus

δE

δ�
= �(x)ρ(x)

∫
ρ(x′)

{
−∂U

∂ξ
(x, x′)ξT (x, x′) + ξ(x, x′)

(
∂U

∂ξ
(x, x′)

)T }
dx′. (43)

We have computed the variations with respect to �. We are not finished yet, as the
equations of motion of a string are formulated on the Lie algebra, not the tangent bundle of
the Lie group. Thus, we need to connect δE/δ� to δE/δM̂.6 To do that, we use the definition
of the left-invariant tangent space at the identity,

M̂i = �−1 ∂�

∂xi
∈ so(3), i = 1, 2, . . . , d, (44)

where xi is the ith coordinate in space. The Lie algebra element is then a ‘vector’ of d
antisymmetric matrices, where d is the dimension of the space. We have, by the usual change
of variables (summation over repeated indices is assumed),

δE =
〈
δE

δ�
, δ�

〉
=
〈

δE

δM̂i

, δM̂i

〉
, (45)

where δE/δM̂ ∈ so(3)∗. Denote again �(x) = �−1(x)δ�(x) ∈ so(3). Then,

δM̂i = −�M̂i + �−1 ∂

∂xi
δ�.

Thus, (45) becomes〈
δE

δ�
, δ�

〉
=
〈

δE

δM̂i

,−�M̂i + �−1 ∂

∂xi
��

〉
=
〈

δE

δM̂i

,
[
M̂i , �

]〉−
〈

∂

∂xi

δE

δM̂i

, �

〉
. (46)

Remembering that � = �−1δ� and setting � using the pairing properties 〈a,�b〉 = 〈�T a, b〉
leads to the following expression (as (�−1)T = �):

δE

δ�
= �

(
ad∗

M̂i

δE

δM̂i

− ∂

∂xi

δE

δM̂i

)
. (47)

This can be written in a familiar way in terms of the vector product in R
3 as

δE

δ�
= −�

(
Mi × δE

δMi

+
∂

∂xi

δE

δMi

)̂
, (48)

which is an extension of the formula (6.18d) of [40].

6 Here, the hat denotes the usual isomorphism between vectors in R
3 and elements of Lie algebra so(3), so M̂ ∈ so(3)

and M ∈ R
3.
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Combining equations (48) and (43) yields an auxiliary equation for δE/δM that is valid
for any value of x:(

Mi (x) × δE

δMi

(x) +
∂

∂xi

δE

δMi

(x)

)̂
= −ρ(x)

∫
ρ(x′)

{
−∂U

∂ξ
(x, x′)ξ(x, x′)T

+ ξ(x, x′)
(

∂U

∂ξ
(x, x′)

)T }
dx′, (49)

where, again, ξ(x, x′) := �−1(x)�(x′) ∈ SO(3). The left-hand side of this equation is
the so(3)∗-valued covariant divergence of the so(3)∗ vector δE/δMi , which is also a 3-by-3
antisymmetric matrix for each i = 1, 2, . . . , d. Likewise, the expression in curly brackets is an
antisymmetric 3-by-3 matrix, as one may verify by taking the transpose. Thus equation (49) is
consistent. In fact, equation (49) is reminiscent of the Yang–Mills–Gauss Law for an so(3)∗-
valued gauge charge. A similar equation appears in the gauge-theoretical formulation of the
dynamical equations for a spin-glass [19]. The gauge freedom remaining in equation (49) is
removed by noting that Mi defined in (44) is a pure gauge field. Consequently, the connection
associated with the so(3)-valued covariant divergence in (49) must have no curvature. Hence,
for any i, j, we find the following consistency conditions:

∂M̂i

∂xj
− ∂M̂j

∂xi
= [M̂i , M̂j ] = M̂iM̂j − M̂j M̂i , (50)

which close the system (49).

Remark 8.2. It is interesting to note the similarity between the variable ξ = �−1(x)�(x′) and
its time analogue �(t)−1�(t + �), which is commonly used in discrete-time Moser–Veselov
integrators [36] and their extensions [9]. Further study of the geometric nature of (49) appears
intriguing and will be undertaken in the future.

Let us see how (49) reduces on the singular solutions (31). Assuming that the potential U
is such that ∂U/∂ξ remains finite on the singular solutions, we substitute (31) into (43) to find

δE

δ�
(x) = �(x)wρ(s, t)δ(x − Q(s, t))

×
∫

wρ(s
′, t)
{
−∂U

∂ξ
(s, s ′)ξT (s, s ′) + ξ(s, s ′)

(
∂U

∂ξ
(s, s ′)

)T }
dx′, (51)

where we have denoted

ξ(s, s ′) := ξ(Q(s, t),Q(s ′, t)) and
∂U

∂ξ
(s, s ′) := ∂U

∂ξ
(Q(s, t),Q(s ′, t)).

Upon multiplying each side of the equation (49) by an arbitrary function φ(x), integrating over
the whole space and equating the coefficients of φ(Q(s, t)), we obtain the following relation:(

wM(s) × δE

δM
(s) +

∂

∂s

δE

δM
(s)

)̂
= −wρ(s)

∫
wρ(s

′)
{
−∂U

∂ξ
(s, s ′)ξ(s, s ′)T

+ ξ(s, s ′)
(

∂U

∂ξ
(s, s ′)

)T }
ds ′. (52)

This is the equation for the computation of the variations δE/δM on the curve that we have
sought. The analogue for curves of the consistency condition (50) then closes the system.
Future work will explore its dynamics and numerical solutions.
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9. Conclusions

In this paper, we explained the derivation of continuum equations for dissipation using the
moment approach in kinetic (Vlasov) equations. We showed how to introduce dissipation in
Vlasov equations based on a geometric generalization of the Darcy’s law of motion (force
being proportional to velocity). We derived the continuum equations of motions in general
settings and then formulated those equations for the particular case of self-organization of
magnetic particles. We showed the existence and spontaneous emergence of generalized
solutions concentrated on delta functions. We also showed that the equations possess singular
solutions concentrated on one-dimensional manifolds (curves) and derived equations of motion
for these curves.

Of particular interest for future work are two questions. The first question is: can solutions
defining singular curves appear from random initial conditions in two or three dimensions?
The positive answer to this question would demonstrate the possibility of controlling magnetic
self-assembly of dispersed particles into magnetic strings, which would be very interesting
technologically.

The second question is: can both inertial and dissipative terms be incorporated consistently
into the theory of geometrically exact rods? Hopefully, this can be accomplished by starting
with the dissipative Vlasov equation containing the inertia terms, repeating the procedure of
[11, 12] keeping the momentum term and closing the system using either truncation or the
cold plasma approximation. An interesting task would be to compare the resulting dissipative
equations with those of the geometrically exact rods in the absence of dissipation [40].
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